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ABSTRACT 
Multiagent systems are often characterized by complex, and 
sometimes unpredictable interactions amongst their autonomous 
components.  While these systems can provide robust and scalable 
solutions to a variety of problems, the inherent complexity 
presents a barrier to their analysis, understanding, debugging and 
modification.  In the work presented here, we seek to overcome 
this problem by modeling the execution of a multiagent system as 
a graph, which admits the application of techniques from the well-
established field of algorithmic graph theory.  In particular, we 
employ graph search and isomorphism computation to find 
repeating patterns of communication within a multiagent 
simulation.  We argue, and demonstrate empirically, that the 
graph, even if it is too large to fit into main memory, carries useful 
properties, which allow these operations to be performed 
efficiently.  We further show that the resulting patterns (which 
tend to be manageable in size) present a useful view of a 
simulation, and facilitate the comparison of different simulations 
against one another.  This is specifically illustrated by applying a 
tool called IntelliTrace, which implements our approach, to 
multiagent models of the national airspace.  At the same time, the 
tool, and its underlying methodology, is domain-independent, and 
can be used for the analysis, development and testing of a variety 
of multiagent systems. 

Categories and Subject Descriptors 
I.2.11 [Computing Methodologies]: Distributed Artificial 
Intelligence – multiagent systems. 

General Terms 
Algorithms, Measurement, Performance, Verification. 

Keywords 
Methodologies/languages, distributed systems, evaluation 
techniques. 

1. INTRODUCTION 
Over the past two decades, decentralized systems of autonomous 
software agents have emerged as an important paradigm for 
solving a variety of computational problems [28].  In contrast to 
conventional software systems, which tend to be monolithic, and 
operate under centralized control, a multiagent system consists of 

independently acting entities (agents), which interact with each 
other to achieve some common goal.  The latter, distributed 
approach is arguably more natural for certain application domains 
(such as those where a number of autonomous entities must be 
modeled/simulated, as in [16][17]), and carries many potential 
advantages, including modularity (which facilitates modification) 
and scalability via parallelism.  Unfortunately, these advantages 
come at a price: even individually simple agents can, through their 
interaction, create complex, emergent behavior, which is difficult 
to predict and analyze.  The action of some agent, whether it can 
be attributed to a change in the input or environment, a software 
modification, a bug, or some source of non-determinism, can 
affect the states of other agents, and manifest itself in non-
intuitive ways.  This makes very difficult the analysis of 
simulation behavior, which may be necessary in order to 
understand the effects of environmental or internal factors, to 
modify the system, or to uncover and correct bugs. 

In this paper, we describe a novel approach to the analysis and 
understanding of multiagent systems.  The basic idea behind the 
approach is that the entire lifetime of such a system can be 
modeled as a graph, where the nodes represent the events (roughly 
speaking, these can be viewed as actions) that are triggered on the 
various agents, and the edges denote messages that are sent during 
the execution of some event, and that can trigger other events.  
Although the resulting graph can be very complex (due to high 
numbers of agents that are active for extended periods of time), a 
vast arsenal of graph algorithms [26] is available for facilitating 
analysis.  The specific approach considered here is to decompose 
the graph into a set of repeating communication patterns (e.g., 
agent A sends a message to agent B, which, in turn, sends 
messages to agents C and D).  We argue that a pattern can 
usefully serve as a descriptive unit for the overall simulation, 
providing a manageable view of the local dynamics of the system 
at one or more points in time.  

The approach has been implemented within a tool called 
IntelliTrace, which has been tailored to the domain-independent 
CybelePro agent framework.  We demonstrate that (a) the tool is 
able to yield useful insight into complex multiagent interactions, 
and (b) it can perform the necessary data processing in an efficient 
manner, both when transforming raw simulation data into a 
graphical model, and when extracting patterns from the graph.  
Importantly, by construction, the graph carries certain useful 
properties, which are utilized in order to tractably find the 
patterns.  As we show, the connected subgraphs within the graph 
are trees, which can be compared for isomorphism in polynomial 
time; this is necessary in determining which trees are instances of 
the same communication pattern.  Further, the graph possesses 
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temporal locality, which allows it to be efficiently traversed, even 
when it is too large to fit into main memory [9]. 

The rest of the paper is organized as follows.  Section 2 provides a 
brief summary of past work on multiagent systems analysis, as 
well as other relevant topics.  Subsequently, to provide context for 
our own work, Section 3 outlines the structure of a multiagent 
simulation within the CybelePro framework.  Section 4 shows 
how such a simulation can be modeled as a graph, and discusses 
how the graph’s properties greatly facilitate the identification of 
communication patterns.  The implementation of the approach is 
discussed in Section 5, and its efficiency is evaluated in Section 6.  
In Section 7, we demonstrate the utility of the approach, by 
applying it to a scenario from the air traffic management domain.  
Finally, in Section 8, we discuss our results, and present ideas for 
future research. 

2. RELATED WORK 
A number of other approaches to the analysis of multiagent 
systems have been developed in the past.  Some are theoretical in 
nature, and have been developed both for generalized agent 
models [15] and for agents in a specific domain [7].  Other 
approaches, like our own, attempt to extract and elucidate the 
most relevant information about the execution of a multiagent 
system.  For example, [18][25] present tools for visualizing 
multiagent simulation data. While the tools give a number of 
detailed and aggregate views of the simulation, they do not model 
agent interactions as event/message graphs, in the manner 
discussed here.  The work of [14] presents a graphical model of 
expected agent behaviors; however, this model is not derived from 
a particular simulation, but rather, is partially developed by a 
human.  A system called the Tracer Tool then compares the 
execution of the system against the model, and notifies the user of 
unexpected behavior.  (By contrast, our approach requires no 
knowledge engineering; rather, graphs derived from different 
simulations are compared against each other, as demonstrated in 
Section 7).  Further, in [2], a tool called the TTL Checker is 
developed to verify multiagent system execution traces against 
formally-specified properties.  (The two aforementioned 
approaches have been used in combination, in [3]).  The work of 
[21] applies a similar philosophy to the problem of multiagent 
system debugging; here, the model of expected agent behavior 
derives from the specifications (e.g., for interaction protocols) that 
were used in the initial design of the system. 

Several relevant multiagent graphical models have been 
developed and implemented as part of a tool called ACL Analyser 
[4][24][27], which is integrated with the JADE agent framework 
[1]. These models include communication graphs, where nodes 
represent agents, and edges are drawn between those agents that 
communicate with each other; causality graphs, where nodes 
represent the states of different agents (e.g., an agent in some state 
caused another agent to change its state), and edges denote causal 
relationships; and order graphs, where nodes represent 
transmitted messages, and edges indicate temporal relationships.  
The models are somewhat different from our own (where nodes 
represent events); however, ACL Analyser also provides a means 
to visualize agent interactions as sequence diagrams [11], as is 
done here. 

To our knowledge, the approach of describing a simulation in 
terms of communication patterns has not received much attention 

in past multiagent systems research.  There has, however, been 
some work on the extraction of dataflow patterns from low-level 
machine code, where each pattern shows dependencies between 
atomic instructions [22].  Pattern-based analysis has also been 
performed in the context of optimizing communication amongst 
hardware components [20]. 

Our work places an emphasis on the fact that the amount of main 
memory available on most computing devices may be insufficient 
to store the event-message graph from a large-scale multiagent 
simulation.  In our experience, storing and retrieving graphical 
data from a conventional, relational database (for example, this is 
proposed in [24]) proved to be too inefficient for our purposes.  
Instead, our approach is partially inspired by object-oriented 
databases [5], as well as work on algorithms for large graphs [6].  

3. A DESCRIPTION OF CYBELEPRO 
In this paper, we focus on simulations of agents that have been 
developed within the CybelePro agent framework 
(www.cybelepro.com).  This framework provides a generalized 
methodology for specifying agent behaviors, along with a number 
of services for communication, distribution, concurrency control, 
etc.  It has been used extensively for a variety of domains, 
including air traffic management [16][17], scheduling [23], and 
anomaly detection in networks [8].  Here, we describe the 
structure of a CybelePro simulation. 

Each CybelePro agent is an autonomous entity, which resides on 
some physical machine, and can be subdivided into one or more 
activities, which act as its functional units.  Two activities of 
different agents may only communicate by sending messages to 
each other; such messages can encapsulate arbitrary data.  
Activities within the same agent have the additional option of 
sending internal messages (which are more efficient, since they 
are transmitted within the confines of a single Java Virtual 
Machine), and may even share references to Java objects; for 
simplicity, we shall ignore such messages in this paper.  Each 
message (whether regular or internal) is sent along some channel; 
an activity must subscribe to a given channel, in order to receive 
its messages. 

To perform useful work, activities are able to execute sections of 
Java code (callbacks) at various points in the simulation; any such 
execution is called an event, and events fall into three categories.  
A message event is triggered when an activity receives a message.  
Likewise, an internal event is triggered by an internal message.  
Finally, timer events are not triggered by messages, but rather, 
occur at predetermined times in the simulation.  To execute timer 
events, an activity must first subscribe to a timer (this is analogous 
to a channel subscription) in order to specify the future time(s) 
when the events are to occur. 

Although many aspects of our approach are applicable to real-
time multiagent systems (with a continuous clock), in this paper, 
we focus on discrete simulations.  In such a simulation, each event 
occurs at some integral major tick, which is further subdivided 
into minor ticks; note that the actual, real-time duration of each 
tick can vary.  The simulation begins at some major tick t0.  For 
any given major tick t, all timer events are said to occur at minor 
tick 0.  If event e occurs at minor tick d, and sends a message 
(regular or internal) that triggers event e’, then e’ is said to occur 
at minor tick d+1.  If, for some minor tick d’, no event sends any 
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messages that trigger other events, then the simulation proceeds to 
major tick t’ and minor tick 0, where t’ corresponds to the 
scheduled time of the earliest timer event that has not yet taken 
place; formally, t’ = mink( {k T : k > t} ), where T is the set of all 
times at which some timer event is scheduled to occur.  If no timer 
events are scheduled (T is empty), then the simulation terminates. 

CybelePro provides a lockstep mechanism, which ensures that, for 
any major/minor tick pairs (t, d) and (t’, d’), if t < t’, or if t = t’ 
and d < d’, then any event at (t, d) will complete before any event 
at (t’, d’) commences.  Within a minor tick, the events of two 
different agents may execute in arbitrary order, or even in parallel; 
however, this should generally not affect the logic of the 
simulation, since agents cannot modify each others’ state without 
sending messages (even if messages are sent, they are processed in 
the next minor tick).  A mechanism is available to ensure that, 
within a single agent, the events of its activities execute in some 
deterministic order. 

4. A GRAPHICAL MODEL OF A 
MULTIAGENT SIMULATION 
Given a CybelePro multiagent system, our goal is to create a 
labeled graphical model G = (V, E, L) which captures its 
execution.  One possibility is to denote the agents/activities within 
the system as nodes, and represent their communications as edges, 
as is done in [4]; however, two activities may communicate at 
disparate points in time, requiring the use of multiple edges 
between two nodes, which does not elegantly capture the temporal 
dimension of the simulation.  Instead, we use a node v  V to 
represent each event that took place within the simulation; a 
directed edge (u, v)  E between nodes u, v represents a message 
(not internal) that is sent from within event u to event v.  Each 
node is labeled with the name of the agent and activity that 
executed the corresponding event, and each edge is labeled with 
the name of the channel along which the event is sent.  Formally, 
let us define the resulting graph as follows: 
Definition 1: Let the simulation graph G be a triple (V, E, L), 
where each node v  V maps to some event in the simulation, and 
for each edge (u, v)  E, there exists some message that was sent 
from the event represented by u, to the event represented by v.  
The labeling function L assigns the name of the executing 
agent/activity L(v) to v, and the message channel name L(u, v) to 
(u, v). 
In our implementation of the model, nodes contain other 
information fields, such as the discrete time at which an event 
occurred, whereas edges store the contents of messages. 
A large-scale simulation can involve many thousands of agents, 
which execute for extended periods of time, yielding a graph G 
that contains millions of edges and nodes.  While the sheer size of 
a simulation can make it exceedingly difficult to analyze, there 
exists a large repertoire of graph algorithms [26], which can be 
applied to transform G, in order to facilitate its understanding.  A 
specific technique, which is the focus of this paper, is to find 
small, connected subsets of G, which represent local patterns of 
inter-agent communication.  The key philosophy behind our 
approach is that such patterns present us with a convenient view 
of the system’s dynamics near some point(s) in time.  Because this 
view is localized, a researcher is not overwhelmed with the full 
complexity of G; on the other hand, it allows him/her to identify 

causal relationships within the simulation, which would be 
difficult to accomplish if simulation data was to be presented as 
individual events or messages, without showing the relationship 
between them. 

 
Figure 1. A tree that models agent communication. 

To precisely define the notion of a communication pattern, let us 
first consider the structure of the main graph G.  From Section 3, 
note that each event in a simulation is triggered by at most one 
message; thus, a node has at most a single incoming edge.  
Furthermore, the semantics of an edge (u, v) are: “u triggered v”.  
Therefore, observe the following: 
Property 1: G is a forest of trees. 
Formally, a tree is defined as a connected graph that contains no 
cycles.  Suppose, by way of contradiction, that some connected 
subgraph G’ of G contains a cycle.  Since no event is triggered by 
more than one message, the cycle can be written as the set of 
directed edges {(v1, v2), (v2, v3), …, (vk, v1)}.  However, this is 
semantically interpreted as “v1 triggered v2, which triggered v3, 
…, which triggered vk, which triggered v1”.  Clearly, this is an 
impossibility. 
While Property 1 thus holds for the most general definition of a 
tree, for convenience, let us restrict the definition to the connected 
components of G (rather than their subcomponents): 
Definition 2: T is a tree in the graph G if T is a connected 
subgraph of G, and there exists no other connected subgraph T’ 
of G such that T’ ≠ T and T is a subgraph of T’. 
To facilitate the understanding of a simulation, it may be useful to 
search through G, and to extract all trees, in order to illustrate 
local patterns of communication that take place within the 
simulation; it is well-known that such a graph search can be done 
in polynomial time [26].  A simple example of a tree is shown in 
Figure 1, where agent/activity A sends messages to 
agents/activities B and C, along channels X and Y, respectively.  
Note, however, that this sort of communication may occur 
multiple times within a simulation; for example, A may 
periodically notify B and C of its status.  A tree T in G thus 
represents an instance of some communication pattern, and it is of 
interest to aggregate similar trees into such patterns.  Here, we 
define similarity in terms of graph isomorphism; specifically: 
Definition 3: A communication pattern P in G is a collection of 
trees T in G, such that any two trees T1, T2 in P are isomorphic to 
each other, but are not isomorphic to any tree T3 that is in G, but 
not in P. 
Formally, we say that T1 and T2 are isomorphic if there exists a 
bijection h from the nodes of T1 to the nodes of T2, such that (u, 
v) is an edge in T1 if and only if (h(u), h(v)) is an edge in T2.  
Since we are dealing with labeled graphs/trees, an additional 
requirement is that L(v) = L(h(v)) and L(u, v) = L(h(u),h(v)), for 
any node or edge.  In general, determining whether or not two 
arbitrary graphs are isomorphic to each other is believed to be a 
difficult computational problem, with no known efficient solution 
[26].  However, if the graphs involved are trees, then efficient, 
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polynomial-time strategies do exist [26].  Thus, the structure of G 
greatly facilitates the identification of communication patterns. 
From a practical point of view, however, it is important to note 
that G may be very large, and may not fit into the available 
amount of main memory.  Thus, it becomes necessary to store 
portions of G externally (e.g. on a hard drive), and to swap them 
into memory as needed; the lists of extracted trees and aggregated 
patterns may also require external storage.  Because input/output 
(I/O) operations require substantial time to execute, the swapping 
rate must be kept low, if the simulation is to be processed in a 
reasonable amount of time.  How can this be accomplished? 
In virtual memory systems [9], when a program requires access to 
some item d of data (identified by some address), it is first 
determined whether or not d is present in main memory.  If this is 
not the case, then a block (page) b of data that contains d is 
fetched from the disk, and swapped into memory.  A principle 
known as locality of reference [9] dictates that under the typical 
behavior of most programs, subsequent data requests will usually 
be to other items in b (or in other blocks that are presently in 
memory); thus, most requests for data will not require a swap.  
This maintains the rate of I/O operations at a reasonable level, and 
allows the program to execute in a satisfactory amount of time. 
In traversing the simulation graph G, we must ensure that locality 
of reference is maintained.  Here, an important observation is that 
G possesses temporal locality, defined as follows: 
Property 2: For a node v in a simulation graph G, let t(v) and 
d(v) be the major tick and minor tick, respectively, at which the 
event (represented by v) occurred.  For any edge (u, v) in G, t(u) 
= t(v), and d(u) = d(v) - 1. 

This property follows as a natural consequence of the CybelePro 
timekeeping mechanisms (as described in Section 3), and is very 
beneficial, as it facilitates the efficient processing of simulation 
graphs.  Suppose that the search algorithm encounters some edge 
(u, v) as it is attempting to extract some tree T.  If the nodes and 
edges of G are stored in a time-ordered fashion, then u and v are 
expected to be relatively near each other on disk; thus, the 
traversal of (u, v) will not likely require a swap.  Furthermore, 
note that by Definition 2 and Property 2, all nodes/events within 
some tree occur within the same major tick.  If no major tick 
contains an excessively large number of events, then the nodes 
and edges of a given tree may be fully stored in main memory, for 
efficient access while the tree is being searched.  In the following, 
we describe how we can take advantage of temporal locality to 
effectively implement a system for pattern identification, and 
provide metrics of its efficiency. 

5. AN EFFICIENT IMPLEMENTATION 
To transform raw simulation data into a set of communication 
patterns, we employ a process that consists of multiple stages, as 
depicted in Figure 2.  The first stage takes place during the 
execution of the simulation, where a profiling service (which is 
provided as part of CybelePro) captures any events and messages 
that take place, along with information about created agents, 
activities, subscriptions, etc., and writes this data to disk in a 
condensed format; unlike in some approaches (e.g. [24]), agent 
code need not be modified for this purpose.  If the simulation runs 
on several machines, then multiple streams of data are first 
transmitted from each machine to a centralized server; in this case, 

the stored data is not guaranteed to be perfectly ordered.  
However, we expect the degree of disorder to be small, because 
data transmission to the server is performed regularly on all 
machines; the logical fidelity of the data is not affected. 

 
Figure 2. The data processing architecture.  Key stages are 

represented via block arrows. 

 
Figure 3. The IntelliTrace tool interface.  Sets of data (graphs, 
patterns, and a comparison of patterns) are shown on the left 
hand side.  The visualized pattern (top right) reveals a simple 
communication between two agents.  Patterns are displayed in 
the fashion of a sequence diagram [11] (similar diagrams are 
provided by the ACL Analyser tool [4][24][27]), where each 
header (top of pattern) represents an activity of some agent; 

for each activity, a lifeline extends downwards, in time, 
displaying each event as a rectangular box; arrows between 

boxes represent messages.  The contents of the given message 
are displayed, in a hierarchical fashion, at the bottom.  Times 

of occurrence are shown near the center of the figure, just 
below the pattern. 

The remaining stages involve the post-simulation processing of 
the data, and take place within an analysis/visualization tool 
called IntelliTrace, shown in Figure 3, which we have 
implemented in the Java programming language, as a set of plug-
ins for the Eclipse development framework.  Rather than relying 
on the virtual memory capacity provided by the operating system 
(which is generally outside the control of the application 
programmer), the tool implements a custom mechanism for 
swapping data between main memory and the hard disk.  This 
allows for control of the layout of stored data; importantly, the 
approximately temporal order of the data is preserved.  This 
external memory system provides a clean interface for reading and 
writing data to specific addresses, automatically performing a 
swap whenever an address is not found in main memory. 
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The IntelliTrace tool reads the binary data files generated by the 
profiling service, and produces an object-oriented model that 
captures, via references between objects, the relationships 
between agents, activities, events, messages, etc. of a given 
simulation.  Whereas the agent and activity objects can typically 
fit into main memory, event and message objects may be very 
numerous, and are stored in external memory.  Such external 
objects are typically implemented to contain only one non-static 
data field, namely, their address in external memory.  When a 
getter/setter method is called, data is read/written from/to an 
external memory location that is at some appropriate offset from 
the address.  Collections of objects can be stored in an external 
linked list, where some items in the list are in main memory, and 
others are on the hard disk, at a given point in time. 

Once built, the object-oriented model of a simulation is traversed 
to generate the simulation graph G; a node object is created for 
each event object, and edges are created for messages (a broadcast 
message that is sent along the same channel and received by k 
activities is converted into k edges that emanate from the same 
node).  The nodes and edges are also stored in external memory, 
in the approximately-temporal order.  Subsequently, tree 
extraction can be performed by iterating over the nodes of G, and 
for every node r that contains no incoming edges (i.e., a root 
node), performing a breadth-first graph search towards all nodes 
reachable from r, yielding a tree T rooted at r.  To simplify the 
output, all isolated nodes (i.e., nodes that have no incoming or 
outgoing edges) are filtered out.  Finally, the extracted trees T are 
aggregated, by isomorphism, into communication patterns. 

As mentioned in Section 4, there exist efficient strategies for 
computing the isomorphism between two trees.  Our approach is 
as follows: during the tree extraction phase, as a tree T is 
searched, we compute a key list K(T), which is a “flattened” 
representation of T, containing the labels of the various nodes and 
edges of T, along with the parent-child relationships between 
them.  The key lists can then be compared for equality, to 
determine that two trees are isomorphic.  Under each unique key 
list Ki produced, we store all trees Tj where Ki = K(Tj), and 
aggregate these trees into a single communication pattern, since 
they are isomorphic to each other. 

6. PERFORMANCE METRICS 
In this section, we evaluate our algorithms, as implemented within 
IntelliTrace, in order to verify their ability to efficiently process 
large sets of data.  For the purposes of generating this data, we 
made use of two different multiagent systems, both of which are 
used to model traffic within the national airspace, but are 
otherwise architecturally very distinct.  The Airspace Concept 
Evaluation System (ACES) [17] uses agents to represent air traffic 
controllers, flights, and various other entities, and incorporates 
sophisticated models of management and control.  The more 
recently-developed ACES-X [16] models flights as passive Java 
objects, which are communicated between different agents; at 
present, its control facilities are very limited.  Our main goal here 
is not to compare the two systems, but rather, to show that our 
approach can be tractably applied to both. 
We invoked both models on a schedule of 4758 flights, and used 
the profiling service (Section 5) to capture simulation data at the 
domain-independent, CybelePro level.  Subsequently, we 
imported each set of data into IntelliTrace, which then built a 

graphical model based on the data, and extracted communication 
patterns from the graph.  The experiments were performed on a 
Dell Dimension 9200 machine, with a dual core, 2.13 GHz 
processor, 2.00 GB of RAM and a 7200 rpm hard drive, running 
Windows XP, Professional Edition.  The Java Virtual Machine 
(JVM), wherein IntelliTrace executes, was allotted 1 GB of RAM.  
In turn, our external memory system, as described in Section 5, 
used only 108 bytes of RAM to store its data, partitioned into 
10,000 blocks of 10,000 bytes each.  Blocks of data are swapped 
from the hard disk, as needed, into the location occupied by the 
least-recently-used block (which is swapped back to disk).  In the 
current implementation, not all objects are stored within external 
memory; thus, there are certain limits to scalability.  However, as 
we demonstrate below, considerably large sets can be handled 
effectively. 

Table 1. Performance metrics 
Type Metric ACES ACES-X 

 

Storage 

Raw data set 1.29 GB 1.05 GB 

Simulation/Graph 2.64 GB 1.39 GB 

Trees/Patterns 2.57 GB 168 MB 

Simulation 

Attributes 

Agents 5738 508 

Activities 21,997 14,850 

 

Graph and 
Pattern 

Measures 

Nodes in graph 2,828,738 1,087,777 

Edges in graph 1,538,231 71,572 

Isolated nodes 712,770 971,215 

Patterns 96,682 14,966 

Avg. nodes in pattern 11.8 3.6 

 

Processing 

Time 

Data import 37 min 12 min 

Graph generation 13 min 2 min 

Tree extraction 28 min 1 min 

Pattern aggregation 21 min < 1 min 

External 
Memory 

Blocks 538,576 158,181 

Reads 844,950 220,481 

 
Table 1 summarizes the results of the experiments.  For both 
simulations, the raw data sets already exceed the 1 GB allotment 
to the JVM.  In the case of ACES, when this set is imported to 
produce a graph, along with an underlying object-oriented model 
of the simulation, the storage requirements double.  In ACES-X, a 
(proportionally) much greater subset of the raw data consists of 
message contents, rather than events or messages themselves, 
which results in a considerably smaller graph, as indicated in the 
table.  In both cases, the size of the typical communication pattern 
is orders of magnitude smaller than the size of the graph (size is 
defined as the number of nodes in the pattern, where each node 
corresponds to k nodes in the main graph, if the pattern occurs k 
times). 
In spite of the large size of the data sets, the various data 
processing stages described in Section 5 can be performed in a 
tractable amount of time, requiring under 100 minutes for the 
ACES case, and only about 15 minutes for ACES-X.  Once the 
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graphical model or set of patterns has been generated, it can 
subsequently be loaded in less than a minute of time. 
The last two rows of Table 1 show the number of data blocks 
(each one of size 10,000 bytes) within the external memory space, 
as well as the number of times that some block is read from the 
hard disk into main memory.  Although certain blocks are 
swapped in multiple times during data processing, this occurs 
fewer than two times for the average block.  This suggests that the 
system does not experience a great deal of thrashing [9], where 
blocks are repeatedly swapped between disk and main memory.  
Most memory accesses are linear, meaning that a set of data is 
processed approximately in the order of storage.  This is achieved 
because the order of storage approximately corresponds to the 
temporal order of the simulation, thus allowing for locality of 
reference, and for tractable processing. 

7. DEMONSTRATION 
Here, we apply our developed approach to a concrete problem, 
which arose while conducting research on queuing models of air 
traffic.  In order to develop the models, the ACES system was 
invoked to generate sets of data, and this data contradicted the 
researchers’ expectations.  Below, we describe the apparent 
inconsistency, and show how our approach helped to resolve it. 
In a specific scenario, three flights are scheduled to 
simultaneously travel from the Philadelphia International Airport 
(PHL) to the Reagan National Airport (DCA).  As shown in 
Figure 4, each flight begins at the departure airport.  Upon taking 
off, and entering the terminal airspace (which surrounds the 
airport), it falls under the jurisdiction of the departure Terminal 
Radar Approach Control (TRACON) facility.  The subsequent, 
en-route portion of the flight is controlled by ZNY, which is the 
New York Air Route Traffic Control Center (ARTCC) (the US 
National Airspace is subdivided amongst 20 such centers), and 
later, the ZDC ARTCC.  Upon arrival, it passes through the space 
that is controlled by the arrival TRACON, and lands at the DCA 
airport.  In the ACES system, each airport, TRACON and ARTCC 
is modeled by a specialized air traffic control (ATC) agent and 
traffic flow management (TFM) agent, the latter carrying on a 
more strategic, less reactive role than the former. 

 
Figure 4. The demonstration scenario. 

Two trials of the simulation were attempted: a baseline trial, 
wherein (unrealistically) any number of flights can take off or land 
at an airport, and a constrained trial, where takeoffs and landings 
must be spaced apart by two minute intervals.  In the baseline 
trial, as scheduled, all three flights left the PHL gate 
simultaneously, and likewise, arrived simultaneously at the DCA 
gate.  In the constrained trial, the first and second flights both left 
the gate simultaneously, and subsequently, the second flight was 

delayed (by two minutes) at the runway, prior to takeoff, as 
expected.  On the other hand, the third flight was delayed at the 
gate by four minutes, and only then taxied to the runway.   Thus, 
the landing of the three flights was (correctly) separated by two-
minute intervals; however, why was the third flight not delayed at 
the runway, like the second flight? 
To investigate this issue, we applied the IntelliTrace tool to the 
sets of data that were collected as the trials executed.  Recall that 
the tool first generates a graphical model for each set of data.  It is 
desirable to compare these graphs for differences, to illustrate how 
the introduction of the constraint on the takeoff/landing rate 
affects the overall simulation; however, comparing the graphs 
directly can be cumbersome.  Instead, IntelliTrace extracts 
communication patterns from the two graphs, and compares sets 
of patterns against each other.  The results of this comparison are 
illustrated in Figure 5.  The vast majority of patterns (over 90%) 
occurred in both trials, with the same frequency, at the exact same 
simulation times.  This greatly simplifies our analysis, since these 
patterns are unlikely to yield information about the effects of the 
introduced constraint.  Instead, we specifically focus on the 11 
patterns that occurred only in the constrained (“Right”) trial. 

 
Figure 5. A comparison of patterns from the baseline trial 

(mnemonically denoted by “Left”), and the constrained trial 
(“Right”), as displayed by IntelliTrace.  Each row corresponds 
to some pattern, which occurred either in the “Left” trial only 
(“LO”), the “Right” trial only (“RO”), or in both trials.  In the 

third case, there may be a frequency mismatch (“FM”), an 
occurrence mismatch (“OM”), or a perfect match (“PM”), 
where the pattern occurs in both simulations with the same 
frequency, at the exact same times.  There were 228 perfect 

matches (only a few are shown for brevity). 
By examination, three of the 11 patterns were found to be 
particularly informative, and are displayed in Figure 6.  Each of 
these patterns occurs exactly once, and all three take place during 
the “planning” phase of the simulation, before any flights depart.  
The first pattern is initiated by the TFM of the arrival airport 
(DCA), which sends the TFM of the arrival TRACON the list of 
projected runway times for the second and third flight, in order to 
notify it of a potential need to delay these flights.  Here, we note 
that in the ACES system, the TRACON is configured to absorb up 
to three minutes of delay for a given flight.  Thus, the second 
flight (which needs to be delayed by two minutes, due to the 
constraint on landings) can be potentially held by the TRACON 
as it flies through the terminal airspace.  On the other hand, the 
third flight must be delayed by four minutes (to separate it from 
the first two flights).  Thus, the TRACON sends a message 
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(highlighted in the figure) to the TFM of the ZDC center, 
requesting that the third flight be delayed further upstream. 

 
 

 
 

 
Figure 6. Three communication patterns, as rendered by 
IntelliTrace, which reveal the effects of the constraint on 

takeoffs and landings. 
The centers are configured to perform certain operations at 15 
minute intervals.  Thus, after 15 minutes of simulation time, 
another pattern occurs, where the ZDC center TFM sends a 
message to the ZNY center TFM, asking it to delay the third 
flight.  The ZNY center, after yet another 15 minute interval, 
triggers a third communication pattern, where the delay request is 
sent to the TFM of the departure TRACON, which is forwarded to 
the ATC of the PHL airport, which then knows that the flight 
must be delayed.  (Additionally, the PHL airport ATC sends a 
message to the ZDC center ATC, notifying it of the change in the 
flight’s schedule, which in turn notifies other interested parties, as 
partially shown at the bottom of Figure 6).  Thus, the request to 
delay the third flight propagates from the arrival airport to the 
departure airport, which delays the flight at the gate.  On the other 
hand, for the second flight, the delay request does not come from 
the arrival airport (since its TRACON can potentially delay the 
flight on approach, if necessary), but rather, is accomplished by 
the departure airport (under its own constraint of spacing takeoffs 
by two minutes). 

8. DISCUSSION 
As the previous section demonstrates, one can obtain useful 
insight into the behavior of a multiagent system by modeling its 
execution as an event/message graph, and moreover, by 
converting this graph into a set of manageable communication 
patterns, which (to our knowledge) has not been attempted in past 
work on multiagent systems.  In our experience, a pattern is 
typically small enough to permit tractable analysis, yet large 
enough to reveal the causality of interactions between agents 
within some local window(s) of time.  Given sets of such patterns, 
one is able to illustrate key differences between simulations from 

which they derive, while factoring out common behavior.  As we 
have illustrated, this approach allows the user to understand the 
effects of modifications to the input or configuration of a 
multiagent system (e.g. the introduction of constraints), and to 
explain unexpected behavior.  It can likewise be useful in the 
development, testing and debugging of multiagent systems.  As 
agent code undergoes modifications, our IntelliTrace tool can 
efficiently generate patterns from simulations, and compare them 
with patterns resulting from older versions of the code.  While a 
perfect match between the pattern sets does not guarantee that the 
modifications did not introduce undesirable effects, it does 
suggest that the overall flow of the simulation remained 
unchanged. 
While the IntelliTrace tool has been developed specifically for 
CybelePro simulations, we hypothesize that our approach can be 
extended to other agent frameworks/toolkits (e.g. [1][13][19]).  
The sending of a message from an agent to one or more other 
agents is a concept common to the vast majority of multiagent 
systems, and can be modeled (as is done here) via one or more 
edges that emanate from a node.  The resulting graph is a forest of 
trees (Property 1 in Section 4), and thus, isomorphism 
computations can be performed efficiently, in order to find 
communication patterns.  There are, of course, challenges in the 
generalization of the approach, since Property 2 (Section 4) may 
not necessarily hold.  In a discrete CybelePro simulation, a new 
major tick does not commence until all present communication 
ceases; thus, any communication tree is contained within the 
boundaries of some major tick.  In a real-time multiagent system 
(whether under CybelePro or under other frameworks), the size of 
a tree is not bounded, and it may be necessary to split these trees 
into multiple subtrees.  Furthermore, if some variant of lockstep 
synchronization (Section 3) is not enforced, then the children of 
some node may correspond to events that occurred at vastly 
different points in time, and the degree of temporal locality in the 
graph will be reduced, resulting in greater I/O overhead during 
processing (if the graph cannot fit into main memory). 
We believe that these challenges are a worthy subject of future 
research, since graph-based methods can potentially be useful in 
the analysis of multiagent systems developed under different 
frameworks, and for various domains.  In the context of 
CybelePro, we have recently extended the IntelliTrace tool with 
the ability to capture and represent the real-time durations of 
events, and have been using it to identify performance bottlenecks 
in multiagent simulations.  Other promising areas for future 
research include the application of link mining algorithms [12] to 
multiagent simulation graphs.  Such methods have often been 
used for the analysis of networks that consist of human 
individuals, but they can certainly be extended towards software 
agents; in fact, parallels between the fields of link mining and 
multiagent systems have been drawn in the past [10].  As 
multiagent systems become a more prominent feature of practical 
computation, we expect this research to increase in its impact and 
importance. 

9. ACKNOWLEDGMENTS 
This work has been supported by NASA SBIR contract 
NNA07BA41C.  The scenario discussed in Section 7 was 
investigated under NASA NRA contract NNX07AP16A.  We 
wish to thank Goutam Satapathy and Sapna George for providing 
respective expertise on CybelePro and ACES. 



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

552

10. REFERENCES 
[1] Bellifemine, F., Poggi, A., and Rimassa, G. 1999.  JADE - A 

FIPA-Compliant Agent Framework.  Technical Report.  
Telecom Italia.  

[2] Bosse, T., Jonker, C., van der Meij, L., Sharpanskykh, A., 
and Treur, J. 2006.  Specification and Verification of 
Dynamics in Cognitive Agent Models.  In Proceedings of the 
Sixth International Conference on Intelligent Agent 
Technology, 247-254. 

[3] Bosse, T., Lam, D., and Barber, K. S. 2006.  Automated 
Analysis and Verification of Agent Behavior.  In 
Proceedings of the Fifth International Conference on 
Autonomous Agents and Multiagent Systems, 1317-1319. 

[4] Botía J., Hernansáez, J., and Gómez-Skarmeta, A. 2006.  On 
the Application of Clustering Techniques to Support 
Debugging Large-Scale Multi-Agent Systems.  In 
Proceedings of the Fourth International Workshop on 
Programming Multi-Agent Systems, 217-227. 

[5] Cattell, R. 1994.  Object Data Management: Object-Oriented 
and Extended Relational Database Systems.  Addison-
Wesley. 

[6] Chiang, Y.-J., Goodrich, M., Grove, E., Tamassia, R., 
Vengroff, D., and Vitter, F. 1995.  External-Memory Graph 
Algorithms.  In Proceedings of the Sixth Annual ACM 
Symposium on Discrete Algorithms, 139-149.  

[7] Cicirello, V. 2001.  A Game-Theoretic Analysis of Multi-
Agent Systems for Shop Floor Routing.  Technical Report.  
Robotics Institute, Carnegie Mellon University. 

[8] Deng, H., Xu, R., Li, J., Zhang, F., Levy, R., and Lee, W. 
2006.  Agent-Based Cooperative Anomaly Detection for 
Wireless Ad Hoc Networks.  In Proceedings of the Twelfth 
International Conference on Parallel and Distributed 
Systems. 

[9] Denning, P. 2005.  The Locality Principle.  Communications 
of the ACM 48, 19-24. 

[10] desJardins, M. and Gaston, M. 2006.  Speaking of Relations: 
Connecting Statistical Relational Learning and Multi-Agent 
Systems.  In Proceedings of the Workshop on Open 
Problems in Statistical Relational Learning. 

[11] Fowler, M. and Scott, K. 1999.  UML Distilled: A Brief 
Guide to the Standard Object Modeling Language.  Addison-
Wesley. 

[12] Getoor, L. and Diehl, C. 2005.  Link Mining: A Survey. 
SigKDD Explorations (Special Issue on Link Mining) 7, 3-
12. 

[13] Graham, J., Decker, K., and Mersic, M. 2003.  DECAF - A 
Flexible Multi Agent System Architecture.  Autonomous 
Agents and Multiagent Systems 7, 7-27.  

[14] Lam, D. and Barber, K. S. 2005.  Comprehending Agent 
Software. In Proceedings of the Fourth International 
Conference on Autonomous Agents and Multiagent Systems, 
586-593. 

[15] Lerman, K. and Galstyan, A. 2001.  A General Methodology 
for Mathematical Analysis of Multi-Agent Systems.  
Technical Report.  University of Southern California. 

[16] Manikonda, V., George, S., and Robinson, C. 2008.  Agent-
Based Modeling and Simulation of the ACES Terminal Area 
Plant Model.  In Proceedings of the AIAA Modeling and 
Simulation Technologies Conference and Exhibit. 

[17] Meyn, L., Windhorst, R., Roth, K., Van Drei, D., Kubat, G., 
Manikonda V., Roney, S., Hunter, G., Huang, A., and 
Couluris, G. 2006.  Build 4 of the Airspace Concept 
Evaluation System.  In Proceedings of the AIAA Modeling 
and Simulation Technologies Conference and Exhibit. 

[18] Ndumu, T., Nwana, H., Lee, L., and Collis, J. 1999.  
Visualising and Debugging Distributed Multi-Agent 
Systems.  In Proceedings of the International Conference on 
Autonomous Agents, 326-333. 

[19] Nwana, H., Ndumu, T., Lee, L., and Collis, J. 1999.  ZEUS: 
A Tool-Kit for Building Distributed Multi-Agent Systems.  
Applied Artificial Intelligence Journal 13, 129-186. 

[20] Ogras, U. and Marculescu, R. 2005.  Energy- and 
Performance-Driven NoC Communication Architecture 
Synthesis Using a Decomposition Approach.  In Proceedings 
of the Conference on Design, Automation and Test, 352-357. 

[21] Poutakidis, D., Padgham L., and Winikoff, M. 2002. 
Debugging Multi-Agent Systems Using Design Artifacts: 
The Case of Interaction Protocols.  In Proceedings of the 
International Conference on Autonomous Agents and 
Multiagent Systems, 15-19. 

[22] Sassone, P. and Wills, D. 2004.  On the Extraction and 
Analysis of Prevalent Dataflow Patterns.  In Proceedings of 
the Seventh International Workshop on Workload 
Characterization, 11-18. 

[23] Satapathy, G., Lang, J., and Levy, R. 2000.  Application of 
Agent Building Tools in Factory Scheduling and Control 
Systems.  In Proceedings of the International Symposium on 
Intelligent Systems and Advanced Manufacturing. 

[24] Serrano E. and Botía J. 2008.  Infrastructure for Forensic 
Analysis of Multi-Agent Systems.  In Proceedings of the 
Sixth International Workshop on Programming Multi-Agent 
Systems. 

[25] Thomas, S., Mueller, J., Harvey, C., and Surka, D. 2001. 
Monitoring and Analysis of Multiple Agent Systems.  In 
Proceedings of the Second GSFC Workshop on Radical 
Agent Concepts. 

[26] Valiente, G. 2002.  Algorithms on Trees and Graphs.  
Springer. 

[27] Vigueras G. and Botía J. 2007.  Tracking Causality by 
Visualization of Multi-Agent Interactions Using Causality 
Graphs.  In Proceedings of the Fifth International Workshop 
on Programming Multi-Agent Systems, 190-204. 

[28] Wooldridge, M. 1999.  Intelligent Agents.  In Multiagent 
Systems: a Modern Approach to Distributed Artificial 
Intelligence, G. Weiss, Ed.  MIT Press, 27-77.

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


