
545

Graph-Based Methods for the Analysis of Large-Scale
Multiagent Systems

Wilbur Peng
William Krueger

Alexander Grushin
Patrick Carlos

Vikram Manikonda
Michel Santos

Intelligent Automation, Inc., 15400 Calhoun Drive, Suite 400, Rockville, MD 20855 1-301-294-5200

{wpeng,agrushin,vikram,wkrueger,sodre,msantos}@i-a-i.com

ABSTRACT
Multiagent systems are often characterized by complex, and
sometimes unpredictable interactions amongst their autonomous
components. While these systems can provide robust and scalable
solutions to a variety of problems, the inherent complexity
presents a barrier to their analysis, understanding, debugging and
modification. In the work presented here, we seek to overcome
this problem by modeling the execution of a multiagent system as
a graph, which admits the application of techniques from the well-
established field of algorithmic graph theory. In particular, we
employ graph search and isomorphism computation to find
repeating patterns of communication within a multiagent
simulation. We argue, and demonstrate empirically, that the
graph, even if it is too large to fit into main memory, carries useful
properties, which allow these operations to be performed
efficiently. We further show that the resulting patterns (which
tend to be manageable in size) present a useful view of a
simulation, and facilitate the comparison of different simulations
against one another. This is specifically illustrated by applying a
tool called IntelliTrace, which implements our approach, to
multiagent models of the national airspace. At the same time, the
tool, and its underlying methodology, is domain-independent, and
can be used for the analysis, development and testing of a variety
of multiagent systems.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artificial
Intelligence – multiagent systems.

General Terms
Algorithms, Measurement, Performance, Verification.

Keywords
Methodologies/languages, distributed systems, evaluation
techniques.

1. INTRODUCTION
Over the past two decades, decentralized systems of autonomous
software agents have emerged as an important paradigm for
solving a variety of computational problems [28]. In contrast to
conventional software systems, which tend to be monolithic, and
operate under centralized control, a multiagent system consists of

independently acting entities (agents), which interact with each
other to achieve some common goal. The latter, distributed
approach is arguably more natural for certain application domains
(such as those where a number of autonomous entities must be
modeled/simulated, as in [16][17]), and carries many potential
advantages, including modularity (which facilitates modification)
and scalability via parallelism. Unfortunately, these advantages
come at a price: even individually simple agents can, through their
interaction, create complex, emergent behavior, which is difficult
to predict and analyze. The action of some agent, whether it can
be attributed to a change in the input or environment, a software
modification, a bug, or some source of non-determinism, can
affect the states of other agents, and manifest itself in non-
intuitive ways. This makes very difficult the analysis of
simulation behavior, which may be necessary in order to
understand the effects of environmental or internal factors, to
modify the system, or to uncover and correct bugs.

In this paper, we describe a novel approach to the analysis and
understanding of multiagent systems. The basic idea behind the
approach is that the entire lifetime of such a system can be
modeled as a graph, where the nodes represent the events (roughly
speaking, these can be viewed as actions) that are triggered on the
various agents, and the edges denote messages that are sent during
the execution of some event, and that can trigger other events.
Although the resulting graph can be very complex (due to high
numbers of agents that are active for extended periods of time), a
vast arsenal of graph algorithms [26] is available for facilitating
analysis. The specific approach considered here is to decompose
the graph into a set of repeating communication patterns (e.g.,
agent A sends a message to agent B, which, in turn, sends
messages to agents C and D). We argue that a pattern can
usefully serve as a descriptive unit for the overall simulation,
providing a manageable view of the local dynamics of the system
at one or more points in time.

The approach has been implemented within a tool called
IntelliTrace, which has been tailored to the domain-independent
CybelePro agent framework. We demonstrate that (a) the tool is
able to yield useful insight into complex multiagent interactions,
and (b) it can perform the necessary data processing in an efficient
manner, both when transforming raw simulation data into a
graphical model, and when extracting patterns from the graph.
Importantly, by construction, the graph carries certain useful
properties, which are utilized in order to tractably find the
patterns. As we show, the connected subgraphs within the graph
are trees, which can be compared for isomorphism in polynomial
time; this is necessary in determining which trees are instances of
the same communication pattern. Further, the graph possesses

Cite as: Graph-Based Methods for the Analysis of Large-Scale
Multiagent Systems, W. Peng, A. Grushin, V. Manikonda, W. Krueger,
P. Carlos, and M. Santos, Proc. of 8th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra, and
Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-
XXX. Copyright © 2009, International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Cite as: Graph-Based Methods for the Analysis of Large-Scale Mul-
tiagent Systems, Wilbur Peng, Alexander Grushin, Vikram Manikonda,
William Krueger, Patrick Carlos, Michel Santos, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2009), Decker,
Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest,
Hungary, pp. 545–552
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

546

temporal locality, which allows it to be efficiently traversed, even
when it is too large to fit into main memory [9].

The rest of the paper is organized as follows. Section 2 provides a
brief summary of past work on multiagent systems analysis, as
well as other relevant topics. Subsequently, to provide context for
our own work, Section 3 outlines the structure of a multiagent
simulation within the CybelePro framework. Section 4 shows
how such a simulation can be modeled as a graph, and discusses
how the graph’s properties greatly facilitate the identification of
communication patterns. The implementation of the approach is
discussed in Section 5, and its efficiency is evaluated in Section 6.
In Section 7, we demonstrate the utility of the approach, by
applying it to a scenario from the air traffic management domain.
Finally, in Section 8, we discuss our results, and present ideas for
future research.

2. RELATED WORK
A number of other approaches to the analysis of multiagent
systems have been developed in the past. Some are theoretical in
nature, and have been developed both for generalized agent
models [15] and for agents in a specific domain [7]. Other
approaches, like our own, attempt to extract and elucidate the
most relevant information about the execution of a multiagent
system. For example, [18][25] present tools for visualizing
multiagent simulation data. While the tools give a number of
detailed and aggregate views of the simulation, they do not model
agent interactions as event/message graphs, in the manner
discussed here. The work of [14] presents a graphical model of
expected agent behaviors; however, this model is not derived from
a particular simulation, but rather, is partially developed by a
human. A system called the Tracer Tool then compares the
execution of the system against the model, and notifies the user of
unexpected behavior. (By contrast, our approach requires no
knowledge engineering; rather, graphs derived from different
simulations are compared against each other, as demonstrated in
Section 7). Further, in [2], a tool called the TTL Checker is
developed to verify multiagent system execution traces against
formally-specified properties. (The two aforementioned
approaches have been used in combination, in [3]). The work of
[21] applies a similar philosophy to the problem of multiagent
system debugging; here, the model of expected agent behavior
derives from the specifications (e.g., for interaction protocols) that
were used in the initial design of the system.

Several relevant multiagent graphical models have been
developed and implemented as part of a tool called ACL Analyser
[4][24][27], which is integrated with the JADE agent framework
[1]. These models include communication graphs, where nodes
represent agents, and edges are drawn between those agents that
communicate with each other; causality graphs, where nodes
represent the states of different agents (e.g., an agent in some state
caused another agent to change its state), and edges denote causal
relationships; and order graphs, where nodes represent
transmitted messages, and edges indicate temporal relationships.
The models are somewhat different from our own (where nodes
represent events); however, ACL Analyser also provides a means
to visualize agent interactions as sequence diagrams [11], as is
done here.

To our knowledge, the approach of describing a simulation in
terms of communication patterns has not received much attention

in past multiagent systems research. There has, however, been
some work on the extraction of dataflow patterns from low-level
machine code, where each pattern shows dependencies between
atomic instructions [22]. Pattern-based analysis has also been
performed in the context of optimizing communication amongst
hardware components [20].

Our work places an emphasis on the fact that the amount of main
memory available on most computing devices may be insufficient
to store the event-message graph from a large-scale multiagent
simulation. In our experience, storing and retrieving graphical
data from a conventional, relational database (for example, this is
proposed in [24]) proved to be too inefficient for our purposes.
Instead, our approach is partially inspired by object-oriented
databases [5], as well as work on algorithms for large graphs [6].

3. A DESCRIPTION OF CYBELEPRO
In this paper, we focus on simulations of agents that have been
developed within the CybelePro agent framework
(www.cybelepro.com). This framework provides a generalized
methodology for specifying agent behaviors, along with a number
of services for communication, distribution, concurrency control,
etc. It has been used extensively for a variety of domains,
including air traffic management [16][17], scheduling [23], and
anomaly detection in networks [8]. Here, we describe the
structure of a CybelePro simulation.

Each CybelePro agent is an autonomous entity, which resides on
some physical machine, and can be subdivided into one or more
activities, which act as its functional units. Two activities of
different agents may only communicate by sending messages to
each other; such messages can encapsulate arbitrary data.
Activities within the same agent have the additional option of
sending internal messages (which are more efficient, since they
are transmitted within the confines of a single Java Virtual
Machine), and may even share references to Java objects; for
simplicity, we shall ignore such messages in this paper. Each
message (whether regular or internal) is sent along some channel;
an activity must subscribe to a given channel, in order to receive
its messages.

To perform useful work, activities are able to execute sections of
Java code (callbacks) at various points in the simulation; any such
execution is called an event, and events fall into three categories.
A message event is triggered when an activity receives a message.
Likewise, an internal event is triggered by an internal message.
Finally, timer events are not triggered by messages, but rather,
occur at predetermined times in the simulation. To execute timer
events, an activity must first subscribe to a timer (this is analogous
to a channel subscription) in order to specify the future time(s)
when the events are to occur.

Although many aspects of our approach are applicable to real-
time multiagent systems (with a continuous clock), in this paper,
we focus on discrete simulations. In such a simulation, each event
occurs at some integral major tick, which is further subdivided
into minor ticks; note that the actual, real-time duration of each
tick can vary. The simulation begins at some major tick t0. For
any given major tick t, all timer events are said to occur at minor
tick 0. If event e occurs at minor tick d, and sends a message
(regular or internal) that triggers event e’, then e’ is said to occur
at minor tick d+1. If, for some minor tick d’, no event sends any

Wilbur Peng, Alexander Grushin, Vikram Manikonda, William Krueger, Patrick Carlos, Michel Santos • Graph-Based Methods for the Analysis of Large-Scale Multiagent Systems

547

messages that trigger other events, then the simulation proceeds to
major tick t’ and minor tick 0, where t’ corresponds to the
scheduled time of the earliest timer event that has not yet taken
place; formally, t’ = mink({k T : k > t}), where T is the set of all
times at which some timer event is scheduled to occur. If no timer
events are scheduled (T is empty), then the simulation terminates.

CybelePro provides a lockstep mechanism, which ensures that, for
any major/minor tick pairs (t, d) and (t’, d’), if t < t’, or if t = t’
and d < d’, then any event at (t, d) will complete before any event
at (t’, d’) commences. Within a minor tick, the events of two
different agents may execute in arbitrary order, or even in parallel;
however, this should generally not affect the logic of the
simulation, since agents cannot modify each others’ state without
sending messages (even if messages are sent, they are processed in
the next minor tick). A mechanism is available to ensure that,
within a single agent, the events of its activities execute in some
deterministic order.

4. A GRAPHICAL MODEL OF A
MULTIAGENT SIMULATION
Given a CybelePro multiagent system, our goal is to create a
labeled graphical model G = (V, E, L) which captures its
execution. One possibility is to denote the agents/activities within
the system as nodes, and represent their communications as edges,
as is done in [4]; however, two activities may communicate at
disparate points in time, requiring the use of multiple edges
between two nodes, which does not elegantly capture the temporal
dimension of the simulation. Instead, we use a node v V to
represent each event that took place within the simulation; a
directed edge (u, v) E between nodes u, v represents a message
(not internal) that is sent from within event u to event v. Each
node is labeled with the name of the agent and activity that
executed the corresponding event, and each edge is labeled with
the name of the channel along which the event is sent. Formally,
let us define the resulting graph as follows:
Definition 1: Let the simulation graph G be a triple (V, E, L),
where each node v V maps to some event in the simulation, and
for each edge (u, v) E, there exists some message that was sent
from the event represented by u, to the event represented by v.
The labeling function L assigns the name of the executing
agent/activity L(v) to v, and the message channel name L(u, v) to
(u, v).
In our implementation of the model, nodes contain other
information fields, such as the discrete time at which an event
occurred, whereas edges store the contents of messages.
A large-scale simulation can involve many thousands of agents,
which execute for extended periods of time, yielding a graph G
that contains millions of edges and nodes. While the sheer size of
a simulation can make it exceedingly difficult to analyze, there
exists a large repertoire of graph algorithms [26], which can be
applied to transform G, in order to facilitate its understanding. A
specific technique, which is the focus of this paper, is to find
small, connected subsets of G, which represent local patterns of
inter-agent communication. The key philosophy behind our
approach is that such patterns present us with a convenient view
of the system’s dynamics near some point(s) in time. Because this
view is localized, a researcher is not overwhelmed with the full
complexity of G; on the other hand, it allows him/her to identify

causal relationships within the simulation, which would be
difficult to accomplish if simulation data was to be presented as
individual events or messages, without showing the relationship
between them.

Figure 1. A tree that models agent communication.

To precisely define the notion of a communication pattern, let us
first consider the structure of the main graph G. From Section 3,
note that each event in a simulation is triggered by at most one
message; thus, a node has at most a single incoming edge.
Furthermore, the semantics of an edge (u, v) are: “u triggered v”.
Therefore, observe the following:
Property 1: G is a forest of trees.
Formally, a tree is defined as a connected graph that contains no
cycles. Suppose, by way of contradiction, that some connected
subgraph G’ of G contains a cycle. Since no event is triggered by
more than one message, the cycle can be written as the set of
directed edges {(v1, v2), (v2, v3), …, (vk, v1)}. However, this is
semantically interpreted as “v1 triggered v2, which triggered v3,
…, which triggered vk, which triggered v1”. Clearly, this is an
impossibility.
While Property 1 thus holds for the most general definition of a
tree, for convenience, let us restrict the definition to the connected
components of G (rather than their subcomponents):
Definition 2: T is a tree in the graph G if T is a connected
subgraph of G, and there exists no other connected subgraph T’
of G such that T’ ≠ T and T is a subgraph of T’.
To facilitate the understanding of a simulation, it may be useful to
search through G, and to extract all trees, in order to illustrate
local patterns of communication that take place within the
simulation; it is well-known that such a graph search can be done
in polynomial time [26]. A simple example of a tree is shown in
Figure 1, where agent/activity A sends messages to
agents/activities B and C, along channels X and Y, respectively.
Note, however, that this sort of communication may occur
multiple times within a simulation; for example, A may
periodically notify B and C of its status. A tree T in G thus
represents an instance of some communication pattern, and it is of
interest to aggregate similar trees into such patterns. Here, we
define similarity in terms of graph isomorphism; specifically:
Definition 3: A communication pattern P in G is a collection of
trees T in G, such that any two trees T1, T2 in P are isomorphic to
each other, but are not isomorphic to any tree T3 that is in G, but
not in P.
Formally, we say that T1 and T2 are isomorphic if there exists a
bijection h from the nodes of T1 to the nodes of T2, such that (u,
v) is an edge in T1 if and only if (h(u), h(v)) is an edge in T2.
Since we are dealing with labeled graphs/trees, an additional
requirement is that L(v) = L(h(v)) and L(u, v) = L(h(u),h(v)), for
any node or edge. In general, determining whether or not two
arbitrary graphs are isomorphic to each other is believed to be a
difficult computational problem, with no known efficient solution
[26]. However, if the graphs involved are trees, then efficient,

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

548

polynomial-time strategies do exist [26]. Thus, the structure of G
greatly facilitates the identification of communication patterns.
From a practical point of view, however, it is important to note
that G may be very large, and may not fit into the available
amount of main memory. Thus, it becomes necessary to store
portions of G externally (e.g. on a hard drive), and to swap them
into memory as needed; the lists of extracted trees and aggregated
patterns may also require external storage. Because input/output
(I/O) operations require substantial time to execute, the swapping
rate must be kept low, if the simulation is to be processed in a
reasonable amount of time. How can this be accomplished?
In virtual memory systems [9], when a program requires access to
some item d of data (identified by some address), it is first
determined whether or not d is present in main memory. If this is
not the case, then a block (page) b of data that contains d is
fetched from the disk, and swapped into memory. A principle
known as locality of reference [9] dictates that under the typical
behavior of most programs, subsequent data requests will usually
be to other items in b (or in other blocks that are presently in
memory); thus, most requests for data will not require a swap.
This maintains the rate of I/O operations at a reasonable level, and
allows the program to execute in a satisfactory amount of time.
In traversing the simulation graph G, we must ensure that locality
of reference is maintained. Here, an important observation is that
G possesses temporal locality, defined as follows:
Property 2: For a node v in a simulation graph G, let t(v) and
d(v) be the major tick and minor tick, respectively, at which the
event (represented by v) occurred. For any edge (u, v) in G, t(u)
= t(v), and d(u) = d(v) - 1.

This property follows as a natural consequence of the CybelePro
timekeeping mechanisms (as described in Section 3), and is very
beneficial, as it facilitates the efficient processing of simulation
graphs. Suppose that the search algorithm encounters some edge
(u, v) as it is attempting to extract some tree T. If the nodes and
edges of G are stored in a time-ordered fashion, then u and v are
expected to be relatively near each other on disk; thus, the
traversal of (u, v) will not likely require a swap. Furthermore,
note that by Definition 2 and Property 2, all nodes/events within
some tree occur within the same major tick. If no major tick
contains an excessively large number of events, then the nodes
and edges of a given tree may be fully stored in main memory, for
efficient access while the tree is being searched. In the following,
we describe how we can take advantage of temporal locality to
effectively implement a system for pattern identification, and
provide metrics of its efficiency.

5. AN EFFICIENT IMPLEMENTATION
To transform raw simulation data into a set of communication
patterns, we employ a process that consists of multiple stages, as
depicted in Figure 2. The first stage takes place during the
execution of the simulation, where a profiling service (which is
provided as part of CybelePro) captures any events and messages
that take place, along with information about created agents,
activities, subscriptions, etc., and writes this data to disk in a
condensed format; unlike in some approaches (e.g. [24]), agent
code need not be modified for this purpose. If the simulation runs
on several machines, then multiple streams of data are first
transmitted from each machine to a centralized server; in this case,

the stored data is not guaranteed to be perfectly ordered.
However, we expect the degree of disorder to be small, because
data transmission to the server is performed regularly on all
machines; the logical fidelity of the data is not affected.

Figure 2. The data processing architecture. Key stages are

represented via block arrows.

Figure 3. The IntelliTrace tool interface. Sets of data (graphs,
patterns, and a comparison of patterns) are shown on the left
hand side. The visualized pattern (top right) reveals a simple
communication between two agents. Patterns are displayed in
the fashion of a sequence diagram [11] (similar diagrams are
provided by the ACL Analyser tool [4][24][27]), where each
header (top of pattern) represents an activity of some agent;

for each activity, a lifeline extends downwards, in time,
displaying each event as a rectangular box; arrows between

boxes represent messages. The contents of the given message
are displayed, in a hierarchical fashion, at the bottom. Times

of occurrence are shown near the center of the figure, just
below the pattern.

The remaining stages involve the post-simulation processing of
the data, and take place within an analysis/visualization tool
called IntelliTrace, shown in Figure 3, which we have
implemented in the Java programming language, as a set of plug-
ins for the Eclipse development framework. Rather than relying
on the virtual memory capacity provided by the operating system
(which is generally outside the control of the application
programmer), the tool implements a custom mechanism for
swapping data between main memory and the hard disk. This
allows for control of the layout of stored data; importantly, the
approximately temporal order of the data is preserved. This
external memory system provides a clean interface for reading and
writing data to specific addresses, automatically performing a
swap whenever an address is not found in main memory.

Wilbur Peng, Alexander Grushin, Vikram Manikonda, William Krueger, Patrick Carlos, Michel Santos • Graph-Based Methods for the Analysis of Large-Scale Multiagent Systems

549

The IntelliTrace tool reads the binary data files generated by the
profiling service, and produces an object-oriented model that
captures, via references between objects, the relationships
between agents, activities, events, messages, etc. of a given
simulation. Whereas the agent and activity objects can typically
fit into main memory, event and message objects may be very
numerous, and are stored in external memory. Such external
objects are typically implemented to contain only one non-static
data field, namely, their address in external memory. When a
getter/setter method is called, data is read/written from/to an
external memory location that is at some appropriate offset from
the address. Collections of objects can be stored in an external
linked list, where some items in the list are in main memory, and
others are on the hard disk, at a given point in time.

Once built, the object-oriented model of a simulation is traversed
to generate the simulation graph G; a node object is created for
each event object, and edges are created for messages (a broadcast
message that is sent along the same channel and received by k
activities is converted into k edges that emanate from the same
node). The nodes and edges are also stored in external memory,
in the approximately-temporal order. Subsequently, tree
extraction can be performed by iterating over the nodes of G, and
for every node r that contains no incoming edges (i.e., a root
node), performing a breadth-first graph search towards all nodes
reachable from r, yielding a tree T rooted at r. To simplify the
output, all isolated nodes (i.e., nodes that have no incoming or
outgoing edges) are filtered out. Finally, the extracted trees T are
aggregated, by isomorphism, into communication patterns.

As mentioned in Section 4, there exist efficient strategies for
computing the isomorphism between two trees. Our approach is
as follows: during the tree extraction phase, as a tree T is
searched, we compute a key list K(T), which is a “flattened”
representation of T, containing the labels of the various nodes and
edges of T, along with the parent-child relationships between
them. The key lists can then be compared for equality, to
determine that two trees are isomorphic. Under each unique key
list Ki produced, we store all trees Tj where Ki = K(Tj), and
aggregate these trees into a single communication pattern, since
they are isomorphic to each other.

6. PERFORMANCE METRICS
In this section, we evaluate our algorithms, as implemented within
IntelliTrace, in order to verify their ability to efficiently process
large sets of data. For the purposes of generating this data, we
made use of two different multiagent systems, both of which are
used to model traffic within the national airspace, but are
otherwise architecturally very distinct. The Airspace Concept
Evaluation System (ACES) [17] uses agents to represent air traffic
controllers, flights, and various other entities, and incorporates
sophisticated models of management and control. The more
recently-developed ACES-X [16] models flights as passive Java
objects, which are communicated between different agents; at
present, its control facilities are very limited. Our main goal here
is not to compare the two systems, but rather, to show that our
approach can be tractably applied to both.
We invoked both models on a schedule of 4758 flights, and used
the profiling service (Section 5) to capture simulation data at the
domain-independent, CybelePro level. Subsequently, we
imported each set of data into IntelliTrace, which then built a

graphical model based on the data, and extracted communication
patterns from the graph. The experiments were performed on a
Dell Dimension 9200 machine, with a dual core, 2.13 GHz
processor, 2.00 GB of RAM and a 7200 rpm hard drive, running
Windows XP, Professional Edition. The Java Virtual Machine
(JVM), wherein IntelliTrace executes, was allotted 1 GB of RAM.
In turn, our external memory system, as described in Section 5,
used only 108 bytes of RAM to store its data, partitioned into
10,000 blocks of 10,000 bytes each. Blocks of data are swapped
from the hard disk, as needed, into the location occupied by the
least-recently-used block (which is swapped back to disk). In the
current implementation, not all objects are stored within external
memory; thus, there are certain limits to scalability. However, as
we demonstrate below, considerably large sets can be handled
effectively.

Table 1. Performance metrics
Type Metric ACES ACES-X

Storage

Raw data set 1.29 GB 1.05 GB

Simulation/Graph 2.64 GB 1.39 GB

Trees/Patterns 2.57 GB 168 MB

Simulation

Attributes

Agents 5738 508

Activities 21,997 14,850

Graph and
Pattern

Measures

Nodes in graph 2,828,738 1,087,777

Edges in graph 1,538,231 71,572

Isolated nodes 712,770 971,215

Patterns 96,682 14,966

Avg. nodes in pattern 11.8 3.6

Processing

Time

Data import 37 min 12 min

Graph generation 13 min 2 min

Tree extraction 28 min 1 min

Pattern aggregation 21 min < 1 min

External
Memory

Blocks 538,576 158,181

Reads 844,950 220,481

Table 1 summarizes the results of the experiments. For both
simulations, the raw data sets already exceed the 1 GB allotment
to the JVM. In the case of ACES, when this set is imported to
produce a graph, along with an underlying object-oriented model
of the simulation, the storage requirements double. In ACES-X, a
(proportionally) much greater subset of the raw data consists of
message contents, rather than events or messages themselves,
which results in a considerably smaller graph, as indicated in the
table. In both cases, the size of the typical communication pattern
is orders of magnitude smaller than the size of the graph (size is
defined as the number of nodes in the pattern, where each node
corresponds to k nodes in the main graph, if the pattern occurs k
times).
In spite of the large size of the data sets, the various data
processing stages described in Section 5 can be performed in a
tractable amount of time, requiring under 100 minutes for the
ACES case, and only about 15 minutes for ACES-X. Once the

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

550

graphical model or set of patterns has been generated, it can
subsequently be loaded in less than a minute of time.
The last two rows of Table 1 show the number of data blocks
(each one of size 10,000 bytes) within the external memory space,
as well as the number of times that some block is read from the
hard disk into main memory. Although certain blocks are
swapped in multiple times during data processing, this occurs
fewer than two times for the average block. This suggests that the
system does not experience a great deal of thrashing [9], where
blocks are repeatedly swapped between disk and main memory.
Most memory accesses are linear, meaning that a set of data is
processed approximately in the order of storage. This is achieved
because the order of storage approximately corresponds to the
temporal order of the simulation, thus allowing for locality of
reference, and for tractable processing.

7. DEMONSTRATION
Here, we apply our developed approach to a concrete problem,
which arose while conducting research on queuing models of air
traffic. In order to develop the models, the ACES system was
invoked to generate sets of data, and this data contradicted the
researchers’ expectations. Below, we describe the apparent
inconsistency, and show how our approach helped to resolve it.
In a specific scenario, three flights are scheduled to
simultaneously travel from the Philadelphia International Airport
(PHL) to the Reagan National Airport (DCA). As shown in
Figure 4, each flight begins at the departure airport. Upon taking
off, and entering the terminal airspace (which surrounds the
airport), it falls under the jurisdiction of the departure Terminal
Radar Approach Control (TRACON) facility. The subsequent,
en-route portion of the flight is controlled by ZNY, which is the
New York Air Route Traffic Control Center (ARTCC) (the US
National Airspace is subdivided amongst 20 such centers), and
later, the ZDC ARTCC. Upon arrival, it passes through the space
that is controlled by the arrival TRACON, and lands at the DCA
airport. In the ACES system, each airport, TRACON and ARTCC
is modeled by a specialized air traffic control (ATC) agent and
traffic flow management (TFM) agent, the latter carrying on a
more strategic, less reactive role than the former.

Figure 4. The demonstration scenario.

Two trials of the simulation were attempted: a baseline trial,
wherein (unrealistically) any number of flights can take off or land
at an airport, and a constrained trial, where takeoffs and landings
must be spaced apart by two minute intervals. In the baseline
trial, as scheduled, all three flights left the PHL gate
simultaneously, and likewise, arrived simultaneously at the DCA
gate. In the constrained trial, the first and second flights both left
the gate simultaneously, and subsequently, the second flight was

delayed (by two minutes) at the runway, prior to takeoff, as
expected. On the other hand, the third flight was delayed at the
gate by four minutes, and only then taxied to the runway. Thus,
the landing of the three flights was (correctly) separated by two-
minute intervals; however, why was the third flight not delayed at
the runway, like the second flight?
To investigate this issue, we applied the IntelliTrace tool to the
sets of data that were collected as the trials executed. Recall that
the tool first generates a graphical model for each set of data. It is
desirable to compare these graphs for differences, to illustrate how
the introduction of the constraint on the takeoff/landing rate
affects the overall simulation; however, comparing the graphs
directly can be cumbersome. Instead, IntelliTrace extracts
communication patterns from the two graphs, and compares sets
of patterns against each other. The results of this comparison are
illustrated in Figure 5. The vast majority of patterns (over 90%)
occurred in both trials, with the same frequency, at the exact same
simulation times. This greatly simplifies our analysis, since these
patterns are unlikely to yield information about the effects of the
introduced constraint. Instead, we specifically focus on the 11
patterns that occurred only in the constrained (“Right”) trial.

Figure 5. A comparison of patterns from the baseline trial

(mnemonically denoted by “Left”), and the constrained trial
(“Right”), as displayed by IntelliTrace. Each row corresponds
to some pattern, which occurred either in the “Left” trial only
(“LO”), the “Right” trial only (“RO”), or in both trials. In the

third case, there may be a frequency mismatch (“FM”), an
occurrence mismatch (“OM”), or a perfect match (“PM”),
where the pattern occurs in both simulations with the same
frequency, at the exact same times. There were 228 perfect

matches (only a few are shown for brevity).
By examination, three of the 11 patterns were found to be
particularly informative, and are displayed in Figure 6. Each of
these patterns occurs exactly once, and all three take place during
the “planning” phase of the simulation, before any flights depart.
The first pattern is initiated by the TFM of the arrival airport
(DCA), which sends the TFM of the arrival TRACON the list of
projected runway times for the second and third flight, in order to
notify it of a potential need to delay these flights. Here, we note
that in the ACES system, the TRACON is configured to absorb up
to three minutes of delay for a given flight. Thus, the second
flight (which needs to be delayed by two minutes, due to the
constraint on landings) can be potentially held by the TRACON
as it flies through the terminal airspace. On the other hand, the
third flight must be delayed by four minutes (to separate it from
the first two flights). Thus, the TRACON sends a message

Wilbur Peng, Alexander Grushin, Vikram Manikonda, William Krueger, Patrick Carlos, Michel Santos • Graph-Based Methods for the Analysis of Large-Scale Multiagent Systems

551

(highlighted in the figure) to the TFM of the ZDC center,
requesting that the third flight be delayed further upstream.

Figure 6. Three communication patterns, as rendered by
IntelliTrace, which reveal the effects of the constraint on

takeoffs and landings.
The centers are configured to perform certain operations at 15
minute intervals. Thus, after 15 minutes of simulation time,
another pattern occurs, where the ZDC center TFM sends a
message to the ZNY center TFM, asking it to delay the third
flight. The ZNY center, after yet another 15 minute interval,
triggers a third communication pattern, where the delay request is
sent to the TFM of the departure TRACON, which is forwarded to
the ATC of the PHL airport, which then knows that the flight
must be delayed. (Additionally, the PHL airport ATC sends a
message to the ZDC center ATC, notifying it of the change in the
flight’s schedule, which in turn notifies other interested parties, as
partially shown at the bottom of Figure 6). Thus, the request to
delay the third flight propagates from the arrival airport to the
departure airport, which delays the flight at the gate. On the other
hand, for the second flight, the delay request does not come from
the arrival airport (since its TRACON can potentially delay the
flight on approach, if necessary), but rather, is accomplished by
the departure airport (under its own constraint of spacing takeoffs
by two minutes).

8. DISCUSSION
As the previous section demonstrates, one can obtain useful
insight into the behavior of a multiagent system by modeling its
execution as an event/message graph, and moreover, by
converting this graph into a set of manageable communication
patterns, which (to our knowledge) has not been attempted in past
work on multiagent systems. In our experience, a pattern is
typically small enough to permit tractable analysis, yet large
enough to reveal the causality of interactions between agents
within some local window(s) of time. Given sets of such patterns,
one is able to illustrate key differences between simulations from

which they derive, while factoring out common behavior. As we
have illustrated, this approach allows the user to understand the
effects of modifications to the input or configuration of a
multiagent system (e.g. the introduction of constraints), and to
explain unexpected behavior. It can likewise be useful in the
development, testing and debugging of multiagent systems. As
agent code undergoes modifications, our IntelliTrace tool can
efficiently generate patterns from simulations, and compare them
with patterns resulting from older versions of the code. While a
perfect match between the pattern sets does not guarantee that the
modifications did not introduce undesirable effects, it does
suggest that the overall flow of the simulation remained
unchanged.
While the IntelliTrace tool has been developed specifically for
CybelePro simulations, we hypothesize that our approach can be
extended to other agent frameworks/toolkits (e.g. [1][13][19]).
The sending of a message from an agent to one or more other
agents is a concept common to the vast majority of multiagent
systems, and can be modeled (as is done here) via one or more
edges that emanate from a node. The resulting graph is a forest of
trees (Property 1 in Section 4), and thus, isomorphism
computations can be performed efficiently, in order to find
communication patterns. There are, of course, challenges in the
generalization of the approach, since Property 2 (Section 4) may
not necessarily hold. In a discrete CybelePro simulation, a new
major tick does not commence until all present communication
ceases; thus, any communication tree is contained within the
boundaries of some major tick. In a real-time multiagent system
(whether under CybelePro or under other frameworks), the size of
a tree is not bounded, and it may be necessary to split these trees
into multiple subtrees. Furthermore, if some variant of lockstep
synchronization (Section 3) is not enforced, then the children of
some node may correspond to events that occurred at vastly
different points in time, and the degree of temporal locality in the
graph will be reduced, resulting in greater I/O overhead during
processing (if the graph cannot fit into main memory).
We believe that these challenges are a worthy subject of future
research, since graph-based methods can potentially be useful in
the analysis of multiagent systems developed under different
frameworks, and for various domains. In the context of
CybelePro, we have recently extended the IntelliTrace tool with
the ability to capture and represent the real-time durations of
events, and have been using it to identify performance bottlenecks
in multiagent simulations. Other promising areas for future
research include the application of link mining algorithms [12] to
multiagent simulation graphs. Such methods have often been
used for the analysis of networks that consist of human
individuals, but they can certainly be extended towards software
agents; in fact, parallels between the fields of link mining and
multiagent systems have been drawn in the past [10]. As
multiagent systems become a more prominent feature of practical
computation, we expect this research to increase in its impact and
importance.

9. ACKNOWLEDGMENTS
This work has been supported by NASA SBIR contract
NNA07BA41C. The scenario discussed in Section 7 was
investigated under NASA NRA contract NNX07AP16A. We
wish to thank Goutam Satapathy and Sapna George for providing
respective expertise on CybelePro and ACES.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

552

10. REFERENCES
[1] Bellifemine, F., Poggi, A., and Rimassa, G. 1999. JADE - A

FIPA-Compliant Agent Framework. Technical Report.
Telecom Italia.

[2] Bosse, T., Jonker, C., van der Meij, L., Sharpanskykh, A.,
and Treur, J. 2006. Specification and Verification of
Dynamics in Cognitive Agent Models. In Proceedings of the
Sixth International Conference on Intelligent Agent
Technology, 247-254.

[3] Bosse, T., Lam, D., and Barber, K. S. 2006. Automated
Analysis and Verification of Agent Behavior. In
Proceedings of the Fifth International Conference on
Autonomous Agents and Multiagent Systems, 1317-1319.

[4] Botía J., Hernansáez, J., and Gómez-Skarmeta, A. 2006. On
the Application of Clustering Techniques to Support
Debugging Large-Scale Multi-Agent Systems. In
Proceedings of the Fourth International Workshop on
Programming Multi-Agent Systems, 217-227.

[5] Cattell, R. 1994. Object Data Management: Object-Oriented
and Extended Relational Database Systems. Addison-
Wesley.

[6] Chiang, Y.-J., Goodrich, M., Grove, E., Tamassia, R.,
Vengroff, D., and Vitter, F. 1995. External-Memory Graph
Algorithms. In Proceedings of the Sixth Annual ACM
Symposium on Discrete Algorithms, 139-149.

[7] Cicirello, V. 2001. A Game-Theoretic Analysis of Multi-
Agent Systems for Shop Floor Routing. Technical Report.
Robotics Institute, Carnegie Mellon University.

[8] Deng, H., Xu, R., Li, J., Zhang, F., Levy, R., and Lee, W.
2006. Agent-Based Cooperative Anomaly Detection for
Wireless Ad Hoc Networks. In Proceedings of the Twelfth
International Conference on Parallel and Distributed
Systems.

[9] Denning, P. 2005. The Locality Principle. Communications
of the ACM 48, 19-24.

[10] desJardins, M. and Gaston, M. 2006. Speaking of Relations:
Connecting Statistical Relational Learning and Multi-Agent
Systems. In Proceedings of the Workshop on Open
Problems in Statistical Relational Learning.

[11] Fowler, M. and Scott, K. 1999. UML Distilled: A Brief
Guide to the Standard Object Modeling Language. Addison-
Wesley.

[12] Getoor, L. and Diehl, C. 2005. Link Mining: A Survey.
SigKDD Explorations (Special Issue on Link Mining) 7, 3-
12.

[13] Graham, J., Decker, K., and Mersic, M. 2003. DECAF - A
Flexible Multi Agent System Architecture. Autonomous
Agents and Multiagent Systems 7, 7-27.

[14] Lam, D. and Barber, K. S. 2005. Comprehending Agent
Software. In Proceedings of the Fourth International
Conference on Autonomous Agents and Multiagent Systems,
586-593.

[15] Lerman, K. and Galstyan, A. 2001. A General Methodology
for Mathematical Analysis of Multi-Agent Systems.
Technical Report. University of Southern California.

[16] Manikonda, V., George, S., and Robinson, C. 2008. Agent-
Based Modeling and Simulation of the ACES Terminal Area
Plant Model. In Proceedings of the AIAA Modeling and
Simulation Technologies Conference and Exhibit.

[17] Meyn, L., Windhorst, R., Roth, K., Van Drei, D., Kubat, G.,
Manikonda V., Roney, S., Hunter, G., Huang, A., and
Couluris, G. 2006. Build 4 of the Airspace Concept
Evaluation System. In Proceedings of the AIAA Modeling
and Simulation Technologies Conference and Exhibit.

[18] Ndumu, T., Nwana, H., Lee, L., and Collis, J. 1999.
Visualising and Debugging Distributed Multi-Agent
Systems. In Proceedings of the International Conference on
Autonomous Agents, 326-333.

[19] Nwana, H., Ndumu, T., Lee, L., and Collis, J. 1999. ZEUS:
A Tool-Kit for Building Distributed Multi-Agent Systems.
Applied Artificial Intelligence Journal 13, 129-186.

[20] Ogras, U. and Marculescu, R. 2005. Energy- and
Performance-Driven NoC Communication Architecture
Synthesis Using a Decomposition Approach. In Proceedings
of the Conference on Design, Automation and Test, 352-357.

[21] Poutakidis, D., Padgham L., and Winikoff, M. 2002.
Debugging Multi-Agent Systems Using Design Artifacts:
The Case of Interaction Protocols. In Proceedings of the
International Conference on Autonomous Agents and
Multiagent Systems, 15-19.

[22] Sassone, P. and Wills, D. 2004. On the Extraction and
Analysis of Prevalent Dataflow Patterns. In Proceedings of
the Seventh International Workshop on Workload
Characterization, 11-18.

[23] Satapathy, G., Lang, J., and Levy, R. 2000. Application of
Agent Building Tools in Factory Scheduling and Control
Systems. In Proceedings of the International Symposium on
Intelligent Systems and Advanced Manufacturing.

[24] Serrano E. and Botía J. 2008. Infrastructure for Forensic
Analysis of Multi-Agent Systems. In Proceedings of the
Sixth International Workshop on Programming Multi-Agent
Systems.

[25] Thomas, S., Mueller, J., Harvey, C., and Surka, D. 2001.
Monitoring and Analysis of Multiple Agent Systems. In
Proceedings of the Second GSFC Workshop on Radical
Agent Concepts.

[26] Valiente, G. 2002. Algorithms on Trees and Graphs.
Springer.

[27] Vigueras G. and Botía J. 2007. Tracking Causality by
Visualization of Multi-Agent Interactions Using Causality
Graphs. In Proceedings of the Fifth International Workshop
on Programming Multi-Agent Systems, 190-204.

[28] Wooldridge, M. 1999. Intelligent Agents. In Multiagent
Systems: a Modern Approach to Distributed Artificial
Intelligence, G. Weiss, Ed. MIT Press, 27-77.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

